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This chapter introduces you to the most useful mechanical oscillator 
model, a mass-spring system with a single degree of freedom. Basic 
understanding of this system is the gateway to the understanding of 
oscillation of more complex systems. 

The reason for the importance of the simple mass-spring system is 
because it is convenient to express the oscillation of complicated 
cases a the sum of several mass-spring systems. This will be 
discussed in the multi-degrees of freedom chapter.
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The top example shows whole vehicle oscillation where the mechanical 
mass is the the vehicle weight minus the wheels. The mechanical 
spring stiffness is the vehicle suspension. 

The mid example is a local wheel-suspension  resonance where the 
weight of the wheel (brakes etc.) is the mechanical mass and the 
stiffness is the vehicle suspension. 

The example at the bottom is the steering-support resonance where 
the inertia is that of the steering wheel and steering column. The 
stiffness is the the car body stiffness. 
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We need to introduce complex notation to work with vibration. The 
expression 

ejωt = cos(ωt) + jsin(ωt) , 

which tells us that the complex notation allows us to work with sine 
and cosine oscillation simultaneously. Complex notation shortens 
expressions that involve oscillation and is therefore convenient to 
work with. However, you need not concern yourself with complex 
notation or complex mathematics in this course. 

The boxed equations are central for work with vibration. Try to 
memorise that this is how we convert between displacement, velocity 
and acceleration for steady state oscillation. 
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The top example shows how we can write the force reaction of a mass 
that oscillates with the frequency f (=> ω = 2πf). The equation reveals 
that we need more force to oscillate the mass with the displacement 
amplitude X at high frequency than is required at low frequency. In 
fact, a doubling of frequency requires a 4 times larger force to 
oscillate at the same displacement magnitude X. 

The mid example shows how we can write the force reaction of a 
spring that oscillates with the frequency f. The equation reveals that 
the force needed to drive the spring with the oscillation amplitude X 
is the same at any frequency. 

The example at the bottom shows how we can write the force 
reaction of a spring that oscillates with the frequency f. The equation 
reveals that the force needed to drive the spring with the oscillation 
amplitude X increases linearly with frequency. 

We use the frequency domain conversion between displacement, 
velocity and acceleration because it is much simpler than the time 
domain derivatives that must otherwise be used. 
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Adding the forces together gives us the fundamental force balance 
that is shown at the top.  

The top equation tells us that the applied force is balanced by 
reaction from the mass, spring and damper elements. The equation 
tells us also that the force distribution between those varies with 
frequency. 

The equation at the bottom shows the force between ground and the 
spring and the dashpot components. 

This system is called a Single Degree of Freedom (SDOF) system 
because we allow it only to oscillate in a single direction (up and down), 
i.e. the system is free to move only in one direction. 
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The mass force is small when ω is small (0 Hz) but become larger as 
frequency is increased. 

Note that the sum of the mass, spring and dashpot forces is always 
the same as the applied force, but that the individual forces for a 
component can be much larger than the applied force since the mass 
and spring forces have opposite signs.

The mass and spring forces are equally large and cancel perfectly at 
the natural frequency (also called eigen-frequency), f0. This type of 
high internal dynamic loads is one reason why structures can break at 
resonance. 

The only force left to oppose the applied force is at the natural 
frequency is the force of the damper. The oscillation displacement 
becomes large is the opposing damping force is small. A large 
displacement implies that the spring force, and therefore also the 
mass force must is large at resonance. 

The curves in the figure shows how the forces on the individual 
components vary with frequency. This variation is typical for any 
SDOF system. 
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The example shows that the dynamic stiffness of system that has 
weight and stiffness varies with frequency. 

The fact that the dynamic stiffness can drop significantly in 
magnitude is one reason why dynamic problems can arise. 
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Dynamic receptance (or compliance) X/F is the inverse of dynamic 
stiffness F/X for the SDOF system. 

The dynamic receptance can be interpreted as the displacement we 
get for a 1 N force excitation at different frequencies. The FRF 
shows that the displacement  is not the same at all frequencies. 

The dynamic receptance is seen to peak at resonance. This peak can 
be seen to reduce as the damping C is increased. 

Dynamic receptance is in the format we use when we measure dynamic 
response FRFs. 
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The fact the there is a 180 degree phase shift as we cross resonance 
and that the resonance frequency is located at the phase 90 degrees 
is used to identify resonance frequencies in experimental modal 
analysis software and FFT analysers. 

Observe that the 180 degree phase shift is rather dramatic as it 
means that the oscillation starts to vibrate in the other direction as 
soon as we pass the natural frequency. 
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The Transmissibility equation, T shows that we have no force isolation 
at low frequency (T = 1). 

The Transmissibility equation, T shows that the foundation must take 
a larger dynamic force than is applied by the force, F at the top of 
the SDOF system (T = 100) at resonance.

The Transmissibility equation, T shows that we receive force isolation 
at frequencies higher than the resonance frequency f0 (T < 1), i.e. 
that the force to ground is smaller than the force that is applied on 
top of the SDOF system.  
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The Transmissibility equation, T shows that the vibration of the mass 
is larger than the vibration at ground at resonance and that we 
receive vibration isolation at frequencies above resonance, f0. 

Also, the Transmissibility equation, T shows that the spring must take 
a large dynamic force at resonance as the relative displacement is 
large at this frequency. This is why a building can break at earth 
quake. 
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The force at the base senses the mass of the total system at 
frequencies below resonance. 

The force at the base senses the spring stiffness at frequencies 
above resonance. 

The dynamic stiffness of the base<excited system is especially high 
at resonance. This phenomenon of dynamic stiffening is used in tuned 
dampers.  Tuned dampers will be discussed in a separate chapter. 
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Damping:

Damping is the rate at which we convert vibration energy into heat. 
The vibration amplitude decays as we loose vibration energy into heat. 

The animation shows that the left (black) SDOF system has less 
damping than the SDOF system on the right since the vibration 
amplitude decays less rapidly when the masses are tensioned and 
released. 

The amount of damping is measured by the vibration amplitude drop 
the SDOF system experiences over a time period, T. 

Critical damping is the amount of damping where the mass completes 
one time period, T before it goes to rest. This can be seen as you lift 
the mass, release it, and watch the SDOF mass drop, then rise again 
and return to equilibrium where it rests. This is motion pattern is 
depicted in the critical damping figure above. 

Overcritical damping means that the system is so damped that its 
vibration will not complete one time period, T when it is released. The 
motion pattern of the SDOF mass is depicted in the figure at the 
lowest right corner. 

M


